Product Environmental Profile # **SIRCO** Manual load break switches for power distribution from 125A to 3200A 6-pole & 8-pole versions # The commitments of Socomec to respect the environment As part of its environmental policy, Socomec is committed to: - Incorporate the principles of the circular economy into the design of new products and services - Promote longer product lifetimes - Promote the use of environmentally responsible materials - Design and develop solutions to further improve the energy efficiency of our products and services - Inform our customers in a transparent manner about the environmental impact of our products throughout their life cycle. To this end, Socomec is committed to constantly monitoring, anticipating and complying with environmental regulations as well as customer expectations relating to its products, and to ensuring that all those involved adhere to and take responsibility for its commitments. PEP ecopassport® Registration number: SOCO-00070-V01.02-EN Head office : 1, rue de Westhouse – F – B.P.60010 – 67235 Benfeld Cedex Tél : 03 88 57 41 41 – Fax : 03 88 57 78 78 – www.socomec.com Contact: http://www.socomec.com/contact-us_en.html #### Product information : #### Reference product The representative product is the SIRCO 8X630 F 90° with sales reference 26018063 with the following description: SIRCO are manually operated multipolar load break switches. They make and break under load conditions and provide safety isolation. #### Other covered references This PEP covers other references listed in the table at the end of the document. #### **Functional unit** Make and break currents by separating part of the installation from a source of electrical energy, with a rated current from 125A to 3200A and rated voltage of 415VAC, for enclosure installation, in industrial applications areas, according to the appropriate use scenario, and during the reference life of 20 years of the product. Provide isolation to ensure the disconnection of the circuit according to the appropriate use scenario. #### Materials and substances #### Declaration of the constitutives materials Total mass of the reference product (including packaging): 13,12 kg among which packaging: 0,426 kg #### For the reference product: | Plastics as % of weight | | Metals as % of weight | | Other as % of weight | | |-------------------------|--------|-----------------------|--------|-----------------------|-------| | Polyester | 47,05% | Copper and its alloys | 24,54% | Cardboard | 2,15% | | Polyamide | 0,52% | Steel | 17,90% | Paper | 0,64% | | | | Zamak | 6,43% | Other organics | <0,1% | | | | Stainless steel | 0,74% | | | | | | Zinc and its alloys | <0,1% | | | | | | Precious metals | <0,1% | | | | | | | | | | | | | | | | | | Other plastics | <0,1% | | | | | | Total Plastics: 6,2 kg | 47,58% | Total Metals: 6,47 kg | 49,62% | Total Others: 0,36 kg | 2,80% | #### **Substances management** Socomec is leading a program to limit the use of hazardous substances in the design of new products and to monitor the presence of substances of concern in its supplies to anticipate future use restrictions. Directive 2011/65/EU: Product references covered by this PEP meet the requirements of the RoHS Directive on the restriction of substances such as lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl (PBB), polybrominated diphenyl ethers (PBDEs) and phthalates (DIBP, DEHP, BBP. DBP). REACH 1907/2006 regulation: To the best of our knowledge, based on the supplier declarations, at the publication date of this document, the product do not contain any other SVHC in a concentration above 0,1% per weight. #### Manufacturing The products covered by this PEP are manufactured on the production site of Benfeld, France whose environmental management system has been ISO 14001 certified. Impacts on the environment are reduced by optimizing its energy consumption and by practicing a rigorous waste management #### Distribution As part of its distribution policy aiming to respect the environment, Socomec is in favor of groupage transports and ISO 14001 certified logistic partners. No reconditionning is planned for the product. This phase is consequently neglected. The sizing of the packaging has been optimized to ensure the best possible protection of the product at the lowest possible volume in order to reduce the impact of the transport stage on the environment. #### Installation The installation phase consists in connecting the product to the existing electrical installation. The installation does not generate any significant impacts on the environment, except impacts from packaging waste. #### Use phase Use phase was modelised according to the following scenario: Geography: European energy mix Load rate: 50% of 630A (In) Use time rate: 30% of the time over 20 years (RLT) All poles were considered as charged #### Care and maintenance The product does not require any maintenance under normal conditions of use. #### Consumables The product does not require consumables. #### • End of life #### End of life treatment SIRCO references covered by this PEP do not contain hazardous components as defined in Annex VII of the WEEE Directive 2012/19/EU - Waste of electrical and electronic equipment. Maintenance and disassembly should always be conducted by qualified personnel. #### Recovery potential of the product according to IEC TR 62635 The recovery potential of the product is 48,77%. This covers material and energy recovery potentials. #### • Environmental impacts #### Calculation methodology: life cycle assessment (LCA) The calculation of the impacts on the environment was made using a life cycle assessment methodology in accordance with the ISO 14040 requirements and with PEP eco passport product category rules. For more details follow the link: www.pep-ecopassport.org This study was carried out with the following version of the software EIME and of the database: EIME version: 6.0.4 Database version: CODDE-2023-02 For biogenic carbon storage the following methodology was used: 0/0 The whole life cycle has been taken into account: | Step | Geographical representativeness | Scenario | | | |------------------------------|--|--|--|--| | Manufacturing
(M) (A1-A3) | Production of other components and packaging : Europe
Assembly : France | From the raw material extraction to the last Socomec logistic platform, including packaging Waste generated during manufacturing phase are taken into account. | | | | Distribution (D)
(A4) | Distribution scenario : Europe | From the last Socomec logistic platform to the final customer. | | | | Installation (I)
(A5) | Transport and treatment of packaging wastes : Local | Local road transport of 1000 km of generated wastes to the treatment site, end of life treatment. | | | | Use phase (U)
(B1-B7) | Energy mix : Europe | Power consumption required during 20 years and maintenance according to consumption scenario above mentionned. | | | | End of life
(EOL) (C1-C4) | Transport and treatment : Local | Road transport of 1000 km from the final customer to the treatment sites. End of life treatment. | | | #### Environmental impacts of the reference product, per FU The following impacts have been calculated to best represent geographically, temporally and technologically each step of the life cycle. | Indicators | Unit | Total impact | M (A1-A3) | D (A4) | I (A5) | U (B1-B7) | EOL (C1-C4) | |---|-----------------------|--------------|-----------|----------|----------|-----------|-------------| | Acidification | mol H+ eq. | 9,11E+00 | 1,47E+00 | 1,47E-02 | 1,27E-03 | 7,61E+00 | 1,40E-02 | | Climate change - Total | kg CO2 eq. | 1,45E+03 | 1,06E+02 | 2,32E+00 | 5,34E-01 | 1,33E+03 | 5,67E+00 | | Climate change - Biogenic | kg CO2 eq. | 5,24E+00 | 3,45E+00 | 0* | 1,79E-02 | 1,78E+00 | 0* | | Climate change - Fossil | kg CO2 eq. | 1,44E+03 | 1,03E+02 | 2,32E+00 | 5,16E-01 | 1,33E+03 | 5,67E+00 | | Climate change - Land use and land use transformation | | 2,16E-06 | 0* | 0* | 2,16E-06 | 0* | 0* | | Ecotoxicity, freshwater | CTUe | 1,59E+04 | 1,50E+03 | 0* | 7,51E+00 | 1,43E+04 | 3,87E+00 | | Particulate matter | disease
occurrence | 6,81E-05 | 9,02E-06 | 1,19E-07 | 9,12E-09 | 5,90E-05 | 0* | | Eutrophication, freshwater | kg P eq. | 3,94E-03 | 1,89E-04 | 8,68E-07 | 7,50E-06 | 3,65E-03 | 1,02E-04 | | Eutrophication, marine | kg N eq. | 1,02E+00 | 1,37E-01 | 6,87E-03 | 5,86E-04 | 8,66E-01 | 1,01E-02 | | Eutrophication, terrestrial | mol N eq. | 1,47E+01 | 1,49E+00 | 7,53E-02 | 4,04E-03 | 1,30E+01 | 1,10E-01 | | Human toxicity, cancer | CTUh | 2,09E-03 | 2,09E-03 | 0* | 0* | 0* | 0* | | Human toxicity, non-cancer | CTUh | 2,22E-05 | 1,60E-05 | 4,40E-09 | 0* | 6,16E-06 | 0* | | lonising radiation, human health | kBq U235
eq. | 3,10E+03 | 1,12E+03 | 0* | 0* | 1,98E+03 | 0* | | Land use | No
dimension | 3,54E+01 | 8,64E+00 | 0* | 3,20E-01 | 2,65E+01 | 0* | | Ozone depletion | kg CFC-11
éq. | 1,23E-05 | 6,45E-06 | 3,55E-09 | 7,78E-09 | 5,69E-06 | 1,13E-07 | | Photochemical ozone formation, human health | kg NMVOC
eq. | 3,37E+00 | 5,46E-01 | 1,90E-02 | 9,58E-04 | 2,78E+00 | 2,36E-02 | | Abiotic resource depletion - fossil fuels
or resource depletion - fossils | MJ | 3,58E+04 | 1,84E+03 | 3,23E+01 | 3,92E+00 | 3,39E+04 | 0* | | Abiotic resource depletion - elements or
resource depletion - metals and
minerals | kg Sb eq. | 6,26E-03 | 6,35E-03 | 0* | 0* | 9,65E-05 | 0* | | Water use | m³ eq. | 1,05E+02 | 5,60E+01 | 0* | 1,06E-01 | 4,71E+01 | 1,51E+00 | | Net use of freshwater | m³ | 2,44E+00 | 1,30E+00 | 0* | 2,46E-03 | 1,10E+00 | 3,50E-02 | | Total Primary Energy | MJ | 4,24E+04 | 1,94E+03 | 3,23E+01 | 4,41E+00 | 4,04E+04 | 0* | | Total use of non-renewable primary energy resources | MJ | 3,58E+04 | 1,84E+03 | 3,23E+01 | 3,92E+00 | 3,39E+04 | 0* | | Total use of renewable primary energy resources | MJ | 6,61E+03 | 9,63E+01 | 0* | 0* | 6,51E+03 | 0* | | Use of non renewable primary energy excluding non renewable primary energy used as raw material | MJ | 3,56E+04 | 1,62E+03 | 3,23E+01 | 3,92E+00 | 3,39E+04 | 0* | | Use of non renewable primary energy resources used as raw material | MJ | 2,21E+02 | 2,21E+02 | 0* | 0* | 0* | 0* | | Use of non renewable secondary fuels | MJ | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | | Use of renewable primary energy
excluding renewable primary energy
used as raw material | MJ | 6,60E+03 | 8,74E+01 | 0* | 0* | 6,51E+03 | 0* | | Use of renewable primary energy resources used as raw material | MJ | 8,86E+00 | 8,86E+00 | 0* | 0* | 0* | 0* | | Use of renewable secondary fuels | MJ | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | | Use of secondary material | kg | 1,98E+00 | 1,98E+00 | 0* | 0* | 0* | 0* | | Hazardous waste disposed | kg | 4,98E+02 | 4,77E+02 | 0* | 0* | 2,49E+01 | 0* | | Non hazardous waste disposed | kg | 3,15E+02 | 1,24E+02 | 8,12E-02 | 2,26E-01 | 1,92E+02 | 0* | | Radioactive waste disposed | kg | 1,18E-01 | 7,61E-02 | 5,78E-05 | 2,49E-05 | 4,01E-02 | 1,95E-03 | | Components for reuse | kg | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | | Exported Energy | MJ | 0,00E+00 | 0* | 0* | 0* | 0* | 0* | | Materials for energy recovery | kg | 6,10E-02 | 0* | 0* | 6,10E-02 | 0* | 0* | |-------------------------------|----|----------|----|----|----------|----|----| | Materials for recycling | kg | 3,30E-02 | 0* | 0* | 3,30E-02 | 0* | 0* | Biogenic carbon content in the reference product: | Biogenic carbon content of the product | kg of C | 0,00E+00 | 0* | N/A | N/A | N/A | N/A | |---|---------|----------|----------|-----|-----|-----|-----| | Biogenic carbon content of the associated packaging | kg of C | 9,69E-02 | 9,69E-02 | N/A | N/A | N/A | N/A | NB: 0* means that this impact either represents less than 0.01% of the total life cycle of the reference flow, or has no impact (in the case where the total impact is zero). For the use stage (U), the product does not require maintenance therefore the impacts values are representatives of the B6 phase from the use stage: "Energy requirements during the use stage" | • | | Drafting Rules: "PEP-PCR-ed4-EN 2021 09 06" Supplemented by: "PSR-0005-ed3-EN-2023 06 06" | | | |---|-------------------------|--|------------------------------------|-------------------| | Verifier accreditation number : VH12 | | Information and reference documents : www.pep-ecopassport.org | | | | Date of issue: 04/08/2023 | | Validity period : 5 years | | | | Independant verification of the declaration and data in compliance | | | e with ISO 14025 : 2006 | | | Internal : | $\overline{\checkmark}$ | External: | | PEP | | The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain) | | | | | | PEPs are compliant with XP C08-100-1 : 2016 or EN 50693:2019 | | | | PASS | | The components of the present PEP may not be compared with c | | | components from any other program. | PORT _® | Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations" This document is intended to be only informative and non-contractual and does not create any right or obligation or commitment for Socomec towards its associates, customers or any other person or entity. All the values indicated in this document may change depending on many factors (use conditions, applications, installations, environment...). The life time mentioned in this document is only indicative and is not intended to be the minimal, maximal or average life time of the product. #### Other references covered and extrapolation factors For the products covered by the PEP other than the reference product, the environmental impacts of each phase of the lifecycle may be calculated with extrapolation factors following the proportionnality rules that you can find below. Extrapolation factors are determined as follows and can be provided upon request: - For the Manufacturing and Distribution phases they are proportional to the mass of the product with its packaging; - For the Installation phase they are proportional to the mass of the packaging; - For the Use phase they are proportional to the power losses of the product; - For the End of Life phase they are proportional to the mass of the product without its packaging. | | _ | |--------------------|-----------| | Model | Reference | | SIRCO 8X630 F 90° | 26018063 | | SIRCO 6X125A F 90° | 26016013 | | SIRCO 8X125A F 90° | 26018013 | | SIRCO 6X125A F 90° | 26016013G | | SIRCO 6X160A F 90° | 26016016 | | SIRCO 8X160A F 90° | 26018016 | | SIRCO 6X250A F 90° | 26016025 | | SIRCO 8X250A F 90° | 26018025 | | SIRCO 6X250A F | 26016025G | | SIRCO 8X250A | 26018025G | | SIRCO 6X400A F 90° | 26016040 | | SIRCO 8X400A F 90° | 26018040 | | SIRCO 6X630A F 90° | 26016063 | | SIRCO 8X 630A | 26018063G | | SIRCO 6X800A F | 26016080 | | SIRCO 8X800A F | 26018080 | | SIRCO 6X1250A F | 26006120 | | Reference | | | |-----------|--|--| | 26008120 | | | | 26016120 | | | | 26018120 | | | | 26018120G | | | | 26016160 | | | | 26018160 | | | | 26016200 | | | | 26018200 | | | | 26016250 | | | | 26018250 | | | | 26018320G | | | | 26016320 | | | | 26018320 | | | | 26018039 | | | | 26016100 | | | | 26018100 | | | | | | |